
EARL – Embodied Agent-Based Robot Control Systems Modelling
Language - version 1.0 - reference manual

EARL developers group - https://www.robotyka.ia.pw.edu.pl/projects/earl/
tomasz.winiarski@pw.edu.pl

April 4, 2020

Important citation notice

If you are to use EARL, in your papers, please at first cite the Electronics journal arti-
cle [14], where the initial version of EARL is presented.

1 Introduction

EARL is developed by the robotic team at Warsaw University of Technology, Institute of Control and
Computation Engineering. EARL proposes a standardized approach to the control system specification
of cyber-physical systems. The Embodied Agent [18] is its foundation. EARL maps the concepts
associated with Embodied Agents into SysML blocks with theirs properties, i.e., parts, references,
values and operations. It extends the set of best practices, by answering the following questions.

• How to organize a specification into SysML packages?

• For what purposes should the graphical tools be used and where the mathematical notation
should be applied directly?

• How to map the specification into component systems?

• How to describe systems with a time-varying structure?

Figure 1 presents the dependencies of EARL packages. The model utilised by EARL is defined in the
Model package (Section 2). The system instances that «realize» EARL model constraints are defined
in the System Instance package (Section 3). This package «uses» independently defined computational
structures from the Calculation Components package and data types from the DataTypes package.

Figure 1: EARL package dependencies.

2 Model Formulation

The model of a system specified in EARL is composed of concepts describing its structure and be-
haviour. The structure of the model is specified with SysML Block Definition Diagrams (bdd) and

1

Internal Block Diagrams (ibd) [9]. For clarity of presentation, the various aspects of the structure are
presented by separate diagrams. The model is composed of a set of diagrams. Each of the diagrams
presents only a part of the structure, however the whole set has to be consistent. Some of the model
constraints are defined by mathematical equations.

2.1 System and Its Parts

System is the most general EARL concept. It is structurally defined as in Figure 2. A System must
contain at least one Robot r . A Robot is composed of at least one Agent a. A system may contain
agents that are not elements of robots, e.g., an Agent coordinating the work of a group of Robots [15].
Agents are connected with aa inter-agent communication Links. Each aa Link can be referred by
a Robot. In general, the Links parts names are created by combining the source block part name at
the beginning of the Link part name and destination block part name at the end of the Link part
name.

Figure 2: System and its parts.

In cyber-physical systems an Agent usually has a physical body, thus it is an Embodied Agent. It
represents either a whole or a part of a robot [16]. The structure of an Agent is defined in Figure 2. The
specific features of robotics, where an Agent can take on various roles, from real-time control, through
sensor data processing, to execution of computationally demanding tasks [19], require its decomposition
into various types of Subsystems and specialized Links between them. The variety of link names was
introduced to distinguish the types of Subsystems or Agents that communicate with each other and the
direction of data transmission. The blocks cardinality presented in Figure 2 is general, but particular
system structure may introduce more strict constraints according to the extra rules presented further.

There are five different specialisations of Subsystems (right side of Figure 2). The main one (in-

2

dispensable for an Agent) is a Control Subsystem cs, which coordinates the Agent’s Subsystems and
communicates with other Agents. Real Effectors re are Subsystems which affect the environment,
whereas Real Receptors rr (exteroceptors) gather information from the environment. Virtual Subsys-
tems (Virtual Receptors vr and Virtual Effectors ve) supervise the work of Real Subsystems. There-
fore, the Real Subsystems of a particular type, cannot exist without virtual ones and vice versa, see
Equation (1).

|vr | > 1 ⇐⇒ |rr | > 1, |ve| > 1 ⇐⇒ |re| > 1. (1)

Inequalities Equation (1) represents the necessary conditions ensuring the preservation of system in-
tegrity. Additional constraints have to be imposed on the number of Subsystems due to the specificity
of inter-subsystem communication Links (Section 2.3).

2.2 Subsystem and its Parts

The structure of a Subsystem is defined in Figures 3 and 4a. It contains Input Buffers ib and Out-
put Buffers ob, Internal Memory m and other entities that are used to model both structural and
behavioural aspects of a Subsystem, i.e., FSM fsm (Finite State Machine), Primitive Predicates pp,
Basic Behaviours bb and Partial Transition Functions pf .

Figure 3: Subsystem and its parts (Input, Output Buffers and Internal Memory are excluded).

3

Figure 4b depicts relations between a particular Subsystem and its communication buffers. The
communication constraints depicted in Section 2.3 cause that each Virtual Receptor or Virtual Effector
must have at least one Input Buffer and one Output Buffer. A Real Effector needs at least one Input
Buffer to receive commands, and a Real Receptor needs at least one Output Buffer to send sensory
data.

(a) (b)

Figure 4: Subsystems and Buffers. (a) Subsystem Buffers and Internal Memory; (b) Relation of
particular Subsystems to Communication buffers.

Input Buffer, Output Buffer and Internal Memory are defined analogically as in [12]. Each Buffer
contains a data structure msg, which stores data of type dataType. The dataType can be defined
either as a primitive type or a composite and nested structure. Input Buffer possesses an operation
receive(), which enables communication with Output Buffers, and stores the received data in the Input
Buffer. Analogically, Output Buffer has a send() operation, which dispatches the data stored in the
Output Buffer to the connected Input Buffers. Internal Memory stores data, which is a value of type
dataType. Input and Output Buffers are graphically represented by squares connected by an arrow
showing the direction of data transfer. Internal Memory is represented by a square with a bidirectional
arrow. Various forms of communication between Subsystems have been described in the paper [17].

Similarly to [4, 8], the EARL Subsystem structural model contains a Finite State Machine (FSM)
that determines its activities (Figure 3). To define the FSM, the set s of FSM States and the set t of
FSM Transitions are distinguished. With each of the states a behaviour bb is associated. Figure 5a
defines how the run() operation works. The FSM starts in the initial FSM State ifs. Then, while
the Subsystem is running, the bb.execute() operation executes a behaviour associated with the current
state, which is represented by cfs. The fsm.selectState() operation evaluates the predicates associated
with the FSM Transitions emerging from cfs to select the next FSM State. FSM Transition (Figure 3)
is defined by the source and destination FSM States as well as the associated Initial Condition, i.e.,
predicate ic.

In the following part of the article a SysML dot “.” notation [9] is used to depict the nesting of the
part instances as well as other block properties. The dot “.” can be treated as an extraction operator.
It is assumed that if a specific instance of a part is not indicated, the set of all instances of the part is
taken into account. In particular, if there is only one instance, there is no need to name it explicitly,
only the part name is needed. The same rule applies to references. As the particular parts compose
objects of the same type, they can be interpreted as sets in mathematical formulas.

The structure of a Basic Behaviour is defined in Figure 3. The Basic Behaviour includes a Transition
Function tf ; a Terminal Condition tc , which is a Predicate determining when the execution of the
Basic Behaviour should terminate; and an error condition ec, which is a predicate indicating that

4

an error has been detected in the execution of the Basic Behaviour. Basic Behaviour also posses an
execute() operation (Figure 5b). That operation, first executes a Transition Function tf .execute(),
then all calculated Output Buffers values are sent out by tf .pf .ob.send(). Next, iterationNumber is
incremented, and tf .pf .ib.receive() gets new values into Input Buffers. Finally, Error Condition ec.fun
and Terminal Condition tc.fun are tested. If both values are false starts a new iteration of operations
composing the Basic Behaviour; otherwise, the fsm.run() operation designates the next FSM State
(Figure 5a).

(a) FSM.run(). (b) Basic Behaviour.execute().

Figure 5: FSM and Basic Behaviour operations.

The structure of a Transition Function is defined in Figure 3. A Transition Function is decom-
posed into Partial Transition Functions. This sometimes reduces the redundancy of the specification,
making it more comprehensible. Moreover, if the implementation of the specified system is based on
components, a Partial Transition Function can be identified with a separate component or a set of
components [6, 13]. In this case, a Partial Transition Function can be reused in more than one Tran-
sition Function similarly as a component can be reused in more than one of the separate groups of
components, where one group implements one specific behaviour of a system. Partial Transition Func-
tions composing a Transition Function can be executed in diverse orders, see, e.g., in [16]. To define
the execution of Partial Transition Functions within a Transition Function, the operation execute()
was introduced. The operation may vary between particular instances of Subsystems.

The structure of a Partial Transition Function is defined in Figure 3. It refers to Input Buffers,
Output Buffers as well as Subsystem Internal Memory (Figure 6). A Partial Transition Function can
read from the Internal Memory (using the mi reference) or write to it (using the mo reference). It
can be defined as a composition of components from the Calculation Components Package (Figure 1).
The composition is defined by a tf .execute() operation. The Partial Transition Function algorithm is
executed by an pf .execute() operation. The concept of the Embodied Agent as presented in this paper
introduces no restrictions on how to implement both of these operations.

Terminal Conditions used by a Basic Behaviour and Initial Conditions utilised within an FSM
Transition can be decomposed into Primitive Predicates. A Primitive Predicate takes its arguments
from Subsystem Buffers, see Figures 3 and 6. Both Predicate and Primitive Predicate execute an
operation called fun producing a Boolean output.

2.3 Embodied Agent Communication

The general system architecture is defined by the Agents and their Subsystems, being the building
blocks forming the system structure, and the communication links between those entities. In a way, the
architecture is defined by the constraints that are imposed on permissible connections. If no constraints
are imposed on the communication links, then the system designer has an excessive freedom of choice,
which in the case of his limited experience might lead to an obscure structure. Therefore, architectures
limiting this choice are preferred, thus leading to freedom from choice [3]. This provides guidance to
the designers, which results in a clear system structure.

5

Figure 6: The utilisation of Buffers and Internal Memory by: Partial Transition Function, Primitive
Predicate and Links.

In the case of EARL, inter-agent and inter-subsystem communication [16] is defined by unidirec-
tional communication Links (see Figures 2 and 6). The communication takes place between Input
Buffers and Output Buffers of Subsystems. Figure 7 presents acceptable communication links between
pairs of Subsystems. Note that the inter-agent communication is realized between the Control Subsys-
tems of the communicating agents. Additionally, Figure 7 shows that for each Real Effector present
in the system at least one transmission chain should exist. The commands produced by the Control
Subsystem, transformed by the Virtual Effector, must reach the Real Effector. Analogically, for each
Real Receptor, there is one compulsory communication chain that transmits and processes sensory
data. The Real Receptor provides data to the Virtual Receptor which in an agregated form passes it
to the Control Subsystem. The other communication Links appearing in Figure 7 are not obligatory.
To define bidirectional communication, a pair of unidirectional communication Links is used. Detailed
discussion of communication in Embodied Agent systems is presented in [17].

Figure 7: Communication constraints, where i 6= j.

6

2.4 Types of Agents

Four general activities of an Agent can be distinguished [15]:

C – overall control of the agent,

E – exerting influence over the environment by using effectors,

R – gathering the information from the environment by using receptors, and

T – inter-agent communication (transmission).

The first activity is indispensable, but the other three are optional, thus eight types of Agents result
(Table 1), depending on their capabilities. However, only seven are of utility, as an agent without any
of the optional capabilities is useless.

Table 1: Type of Agent, number of its Subsystems (|ve|, |re|, |vr |, |rr |) and number of inter agent
communication Links (|aa|) expressed with respect to the number of Buffers of the considered Agent.

|cs| |ve| |re| |vr | |rr | |aa| Description

C 1 0 0 0 0 0 zombie (useless)
CT 1 0 0 0 0 1..* purely computational agent
CE 1 1..* 1..* 0 0 0 blind agent
CR 1 0 0 1..* 1..* 0 monitoring agent
CET 1 1..* 1..* 0 0 1..* teleoperated agent
CRT 1 0 0 1..* 1..* 1..* remote sensor
CER 1 1..* 1..* 1..* 1..* 0 autonomous agent
CERT 1 1..* 1..* 1..* 1..* 1..* full capabilities

2.5 Specification of a Particular Robot Control System

The particular structure of a system is specified by application of instances of specializations of
blocks [7] constituting the general model presented above. The names of instances should be long
enough to be descriptive and intuitive to interpret, thus reducing the need for additional glossaries.
In our approach, each instance can set the number of parts and references (e.g., associated Buffers),
however within the limits imposed by the general model. Similarly, each instance can redefine the par-
ticular operations of parent blocks present in the general model (e.g., each instance of Partial Transition
Function redefines pf .execute operation).

In general, a system instance is defined as a graph. Its nodes represent Agents a and the directed
arcs represent the communication Links aa between them. It is a good practice to name Links by
using the names of communicating Agents: first the source Agent name, then a comma, and finally the
destination Agent name. Input Buffers and Output Buffers of the Control Subsystems are depicted as
sources and destinations of dataTypes being transmitted through the Links. The Buffer names reflect
the content of dataType being transmitted. The Subsystems are defined analogically.

Specification refers to a system with a static structure and invariable behaviour, or a system with
a variable structure at a certain time instant that both can be efficiently solved by using advanced
optimization techniques proposed in [1, 2]. To specify a particular system, instances of the relevant
concepts appearing in the general system model should be concretised. The SysML diagrams [10] are
a part of the EARL-based system (Table 2). Some of the EARL concepts are specified mathematically:

• model and system instance constraints that can not be practically formulated in diagrams,

• fun operations of Predicates and Primitive Predicates, and

• some calculations performed inside actions of Activity Diagrams of Partial Transition Functions,
e.g., control laws.

7

In addition, mathematical notation is used to express formal conditions ascertaining the correctness of
the composition of Partial Transition Functions.

Table 2: SysML diagrams describing system parts in EARL.

System Part and Function SysML Dia-
grams

System and its parts, initial analysis req, uc
System and Agent internal structure, Links, Input Buffer,
Output Buffer

ibd

FSM, FSM State stm
Operations of blocks act

3 Example of a System Specified Using EARL

This section is devoted to the illustration of how to use the EARL language to specify a robot control
system. The example presents a single robot multi-agent system containing CT and CET agents.
For the obvious reason of briefness, this description is not a complete specification, but contains only
examples of important aspects of the general model and its use:

• Structure of the whole System with Buffers, Internal Memories, inter Agent communication Links,
and dataTypes used by them.

• Structure of the particular Agent with Buffers, Internal Memories, inter Subsystem communica-
tion Links, and dataTypes used by them.

• Specification of a particular Subsystem, its structure and behaviour, i.e., Buffers, Internal Mem-
ories, dataTypes, FSM, Basic Behaviours and their Terminal Conditions and Error Conditions;
Primitive Predicates, FSM Transitions and their Initial Conditions; method of both composition
and execution of Partial Transition Functions and control law utilised in the activity diagram of
Partial Transition Function.

A manipulation robot with N degrees of freedom and a gripper is considered, capable to perform
e.g. pick and place task. The specification process starts with the definition of the System structure.
Tips on the specification of requirements and use cases using SysML can be found in [5, 11].

3.1 Structure of the System Composed of Agents

There are three Agents in the System (Figure 8). The Agent task/a supervises the task execution,
i.e., picking and placing objects; the Agent manip/a controls the N-DOF manipulator; and the Agent
grip/a controls the gripper. The gripper controller is separate from the manipulator controller, because
different grippers can be attached to the manipulator, thus separate Agents facilitate system modifi-
cation.

8

Figure 8: Structure of the considered exemplary System.

Figure 9 presents the dataTypes transmitted between the Agents. The Task Agent task/a sends
ManipulatorCommands to the Manipulator Agent manip/a. The commands contain parameters, e.g.,
operational or joint position setpoints and a command to perform emergency stop. In return task/a
gets a ManipulatorState dataType containing: the current operational or joint position, status of the
manipulator movement and information whether an emergency stop occurred. The Task Agent task/a
sends GripperCommand messages to the Gripper Agent grip/a and receives GripperStatus in return.
Similarly to messages exchanged between manip/a and task/a Agents, the GripperCommand and
GripperStatus messages contain parameters describing the desired and current gripper finger positions.

Figure 9: dataTypes transmitted within the System.

3.2 Manipulator Agent manip/a

The structure of the Manipulator Agent manip/a is presented in Figure 10. Each Real Effector re
represents one of the N drives of manipulator joints. Each drive is controlled by a Virtual Effector
that, e.g., implements a motor position regulator. All N Virtual Effectors ve are controlled by a single
Control Subsystem cs, which causes the manipulator to move either in joint space, where it interpolates
between joint positions, or in operational space, where it interpolates between Cartesian poses of
a frame affixed to a chosen link of the kinematic chain.

9

Figure 10: Structure of the Agent manip/a; letter K placed at the end of the instance name should be
substituted by a number, i.e. K ∈ {1, ..., N}.

The dataTypes transmitted inside the Manipulator Agent manip/a are presented in Figure 11.
The Control Subsystem cs sends MotorControllerCommand to each Virtual EffectormotorControllerK/ve.
The dataType contains the desired winding current value or a command to switch the hardware driver
to the emergency stop state. Each Virtual Effector motorControllerK/ve sends to the Control Sub-
system cs information about the current motor position and whether the hardware driver is in an
emergency stop state. Each Virtual Effector motorControllerK/ve sends the desired motor winding
current to its respective Real Effector motorK/re, and in return receives the encoder readings. Table 3
describes types of data stored in the manip/a.cs.

Figure 11: Definition of manip/a dataTypes.

Table 3: manip/a.cs.m dataTypes.

m dataType

motionFinished/m boolean
currentOperationalPos/m OperPosition
currentJointPos/m JointPosition
emergencyStopCommandK/m boolean
windingCurrentK/m double

Table 4 describes Primitive Predicates pp used in the Control Subsystem manip/a.cs. They take

10

as arguments the contents of the buffers and memory. The newData(InputBuffer.msg) function
producing Boolean values, returns TRUE if there is new data in the Input Buffer, and FALSE if the
data is obsolete.

Table 4: Definitions of manip/a.cs.pp.fun.

pp fun

emergencyStop/pp
manipulatorCommand/ib.msg .emergencyStopCommand ∨
motorControllerState1/ib.msg .emergencyStopCommand ∨ . . .∨
motorControllerStateN /ib.msg .emergencyStopCommand

motionFinished/pp motionFinished/mi .msg
newJointPos/pp newData(manipulatorCommand/ib.msg .jointPosSetpoint)
newOperationalPos/pp newData(manipulatorCommand/ib.msg.operationalPosSetpoint)
false/pp FALSE

Table 5 describes the Predicates utilised by manip/a.cs. Figure 12 shows possible transitions
between the FSM States of the Control Subsystem manip/a.cs as well as the association of Basic
Behaviours to particular FSM States.

Table 5: Initial conditions labelling manip/a.cs.fsm transitions and terminal conditions of
manip/a.cs.bb. It is assumed that task/a can not set simultaneously a new joint position and an
operational space pose.

Labels of transitions between FSM States

cs.fsm.t .ic.fun , PREDICATE
t PREDICATE

idle, jointMove/t newJointPos/pp.fun ∧ ¬emergencyStop/pp.fun

jointMove, jointMove/t newJointPos/pp.fun ∧ ¬emergencyStop/pp.fun

idle, operationalMove/t
newOperationalPos/pp.fun ∧
¬emergencyStop/pp.fun

operationalMove, operationalMove/t
newOperationalPos/pp.fun ∧
¬emergencyStop/pp.fun

jointMove, idle/t ¬emergencyStop/pp.fun
operationalMove, idle/t ¬emergencyStop/pp.fun

i , emergencyStop/t ; where i 6= emergencyStop emergencyStop/pp.fun

Definitions of Terminal Conditions

cs.bb.tc.fun , PREDICATE
bb PREDICATE

idle/bb
newJointPos/pp.fun ∨ newOperationalPos/pp.fun ∨
emergencyStop/pp.fun

jointMove/bb motionFinished/pp.fun ∨ emergencyStop/pp.fun
operationalMove/bb motionFinished/pp.fun ∨ emergencyStop/pp.fun

emergencyStop/bb false/pp.fun

The Control Subsystem manip/a.cs uses the following Partial Transition Functions.

• calculatePosition/pf—calculates manipulator joint positions and end-effector operational space pose.

• jointMove/pf / operationalMove/pf—generates the joint/operational space trajectory and cal-
culates the winding current needed to realize the motion (Figure 13).

• passiveRegulation/pf—calculates the winding current needed to keep the manipulator in a sta-
tionary position.

11

• emergencyStop/pf—copies the information about the occurrence of an emergency stop to Output
Buffers that are linked to the associated Subsystem Input Buffers.

• outputManipState/pf—composes ManipulatorState/ob (Figure 14a).

• outputMotorCon/pf—composes DriveControllerCommandK/ob (Figure 14b).

Figure 12: manip/a.cs.fsm definition. Conditions of transitions between FSM States are specified in
Table 5.

Figure 13: manip/a.cs.jointMove/pf .execute() – operation definition.

12

(a) outputManipState/pf .execute(). (b) outputMotorCon/pf .execute().

Figure 14: manip/a.cs.pf .execute()—operations definition.

Figure 13 shows the execute operation of a jointMove/pf Partial Transition Function. This Partial
Transition Function realises, e.g., the PI type motor position regulator for each joint Equation (2),
Equation (3):

windingCurrent = Kp e(t) +Ki

∫ t

0
e(t′)dt′, (2)

e = desiredMotorPos− currentMotorPos, (3)

where Kp and Ki are, respectively, proportional and integral gain factors, e is the position error,
t is time.

Table 6 shows which Partial Transition Functions constitute the definitions of Transition Function
compositions used by Basic Behaviours of manip/a.cs.bb.

The Partial Transition Functions manip/a.cs.pf are subdivided into two disjoint sets: pfc and pfo.
The pfc set Equation (4) contains Partial Transition Functions that take as arguments Input Buffers:
manipulatorCommand/ib and motorControllerCommandK/ib[N]

pfc={calculatePosition/pf , jointMove/pf , operationalMove/pf ,

passiveRegulation/pf , emergencyStop/pf }.
(4)

The values produced by them are inserted into the Internal Memory mbo Equation (5)

mbo={motionFinished/mo, currentOperationalPos/mo, currentJointPos/mo,

emergencyStopCommandK/mo,windingCurrentK/mo}.
(5)

Functions from the pfo set Equation (6) take arguments from the Internal Memory mbo Equation (5)
and produce the Output Buffer values: ManipulatorState/ob and MotorControllerCommandK/ob[N],
hence they produce output of the whole Subsystem

pfo={outputManipState/pf , outputMotorCon/pf }. (6)

It was assumed that any two Partial Transition Functions used by a particular Transition Function do
not produce data to the same Output Buffers and Internal Memories, therefore the following conditions
are formulated for the pfc set Equation (7) and the pfo set Equation (8), respectively,

(∀x/bb)(∀x/bb.i/pf , x/bb.j/pf ∈ pfc, i 6= j)(x/bb.i/pf .k/mo � x/bb.j/pf .k/mo, k/mo ∈ mbo),
(7)

(∀x/bb)(∀x/bb.i/pf , x/bb.j/pf ∈ pfo, i 6= j)(x/bb.i/pf .k/ob � x/bb.j/pf .k/ob), (8)

where � stands for „is not the same entity”.

13

Table 6: Compositions of Transition Functions manip/a.cs.bb.tf .pf . The right part of the ta-
ble presents what parts of output buffers and internal memory are produced by the specific
Partial Transition Functions.

/mo /ob

bb pf m
ot
io
n
F
in
is
h
ed

cu
rr
en

tJ
oi
n
tP

os

cu
rr
en

tO
p
er
a
ti
on

a
lP

os

em
er
g
en

cy
S
to
p

w
in
d
in
g
C
u
rr
en

tK

M
a
n
ip
u
la
to
rS

ta
te

M
ot
or
C
on

tr
ol
le
rC

om
m
a
n
d
K

idle/bb

outputManipState/pf •

outputMotorCon/pf •

calculatePosition/pf • •

passiveRegulation/pf •

jointMove/bb

outputManipState/pf •

outputMotorCon/pf •

calculatePosition/pf • •

jointMove/pf • •

operationalMove/bb

outputManipState/pf •

outputMotorCon/pf •

calculatePosition/pf • •

operationalMove/pf • •

emergencyStop/bb

outputManipState/pf •

outputMotorCon/pf •

calculatePosition/pf • •

emergencyStop/pf •

Transition Functions act in the following way. First, they compute the Partial Transition Func-
tions from the pfc set, and then they compute the Partial Transition Functions from the pfo set.
The fulfilment of Equations (7) and (8) makes it possible to run Partial Transition Functions be-
ing members of pfc in parallel in the first stage of the Transition Function execution, and then run
the Partial Transition Functions being members of pfo set in parallel in the second stage of Tran-
sition Function execution. To illustrate the above considerations, Figure 15 shows the definition of
jointMove/bb.tf .execute() operation – practical realization of Partial Transition Functions execution
for jointMove Basic Behaviour.

Figure 15: jointMove/bb.tf .execute() operation definition.

14

References

[1] A. Caliciotti, G. Fasano, S. G. Nash, and M. Roma. “An adaptive truncation criterion, for linesearch-
based truncated Newton methods in large scale nonconvex optimization”. In: Operations Research Letters
46.1 (2018), pages 7–12. issn: 0167-6377. doi: 10.1016/j.orl.2017.10.014.

[2] A. Caliciotti, G. Fasano, S. G. Nash, and M. Roma. “Data and performance profiles applying an adaptive
truncation criterion, within linesearch-based truncated Newton methods, in large scale nonconvex opti-
mization”. In: Data in Brief 17 (2018), pages 246–255. issn: 2352-3409. doi: 10.1016/j.dib.2018.01.
012.

[3] S. Dennis, L. Alex, L. Matthias, and S. Christian. “The SmartMDSD Toolchain: An Integrated MDSD
Workflow and Integrated Development Environment (IDE) for Robotics Softwaree”. In: Journal of Soft-
ware Engineering in Robotics 7.1 (2016), pages 3–19.

[4] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane. “RobotML, a Domain-Specific Language to
Design, Simulate and Deploy Robotic Applications”. In: International Conference on Simulation, Model-
ing, and Programming for Autonomous Robots. Nov. 2012, pages 149–160. doi: 10.1007/978-3-642-
34327-8_16.

[5] M. dos Santos Soares and J. Vrancken. “Requirements specification and modeling through SysML”. In:
IEEE International Conference on Systems, Man and Cybernetics. 2007, pages 1735–1740. doi: 10.1109/
ICSMC.2007.4413936.

[6] W. Dudek, W. Szynkiewicz, and T. Winiarski. “Nao Robot Navigation System Structure Development in
an Agent-Based Architecture of the RAPP Platform”. In: Recent Advances in Automation, Robotics and
Measuring Techniques. Edited by R. Szewczyk, C. Zieliński, and M. Kaliczyńska. Volume 440. Advances
in Intelligent Systems and Computing (AISC). Springer, 2016, pages 623–633. doi: 10.1007/978-3-
319-29357-8_54.

[7] S. Friedenthal, A. Moore, and R. Steiner. A practical guide to SysML: The systems modeling language.
3rd ed. Elsevier, Morgan Kaufmann, 2015.

[8] T. Kornuta and C. Zieliński. “Robot control system design exemplified by multi-camera visual servoing”.
In: Journal of Intelligent and Robotic Systems 77.3–4 (2013), pages 499–524. doi: 10.1007/s10846-013-
9883-x.

[9] OMG Systems Modeling Language - Version 1.6. accessed on 4 April 2020. Open Management Group.
Dec. 2019. url: https://www.omg.org/spec/SysML/1.6/.

[10] A. Salado and P. Wach. “Constructing True Model-Based Requirements in SysML”. In: Systems 7.2
(2019). issn: 2079-8954. doi: 10.3390/systems7020019.

[11] M. Soares, J. Vrancken, and A. Verbraeck. “User requirements modeling and analysis of software-intensive
systems”. In: Journal of Systems and Software 84 (Feb. 2011), pages 328–339. doi: 10.1016/j.jss.2010.
10.020.

[12] P. Trojanek. “Design and implementation of robot control systems reacting to asynchronous events”. PhD
thesis. Warsaw University of Technology, 2012.

[13] T. Winiarski, K. Banachowicz, M. Walęcki, and J. Bohren. “Multibehavioral position–force manipulator
controller”. In: 21th IEEE International Conference on Methods and Models in Automation and Robotics,
MMAR’2016. IEEE, 2016, pages 651–656. doi: 10.1109/MMAR.2016.7575213.

[14] T. Winiarski, M. Węgierek, D. Seredyński, W. Dudek, K. Banachowicz, and C. Zieliński. “EARL –
Embodied Agent-Based Robot Control Systems Modelling Language”. In: Electronics 9.2 (2020), page 379.
doi: 10.3390/electronics9020379.

[15] C. Zieliński, T. Winiarski, and T. Kornuta. “Agent-Based Structures of Robot Systems”. In: Trends in
Advanced Intelligent Control, Optimization and Automation. Edited by J. Kacprzyk and et al. Volume 577.
Advances in Intelligent Systems and Computing. 2017, pages 493–502. doi: 10.1007/978-3-319-60699-
6_48.

[16] C. Zieliński. “Transition-Function Based Approach to Structuring Robot Control Software”. In: Robot
Motion and Control. Edited by K. Kozłowski. Volume 335. Lecture Notes in Control and Information
Sciences. Springer-Verlag, 2006, pages 265–286.

[17] C. Zieliński, M. Figat, and R. Hexel. “Communication Within Multi-FSM Based Robotic Systems”. In:
Journal of Intelligent & Robotic Systems 93.3 (2019), pages 787–805. issn: 1573-0409. doi: 10.1007/
s10846-018-0869-6.

15

https://doi.org/10.1016/j.orl.2017.10.014
https://doi.org/10.1016/j.dib.2018.01.012
https://doi.org/10.1016/j.dib.2018.01.012
https://doi.org/10.1007/978-3-642-34327-8_16
https://doi.org/10.1007/978-3-642-34327-8_16
https://doi.org/10.1109/ICSMC.2007.4413936
https://doi.org/10.1109/ICSMC.2007.4413936
https://doi.org/10.1007/978-3-319-29357-8_54
https://doi.org/10.1007/978-3-319-29357-8_54
https://doi.org/10.1007/s10846-013-9883-x
https://doi.org/10.1007/s10846-013-9883-x
https://www.omg.org/spec/SysML/1.6/
https://doi.org/10.3390/systems7020019
https://doi.org/10.1016/j.jss.2010.10.020
https://doi.org/10.1016/j.jss.2010.10.020
https://doi.org/10.1109/MMAR.2016.7575213
https://doi.org/10.3390/electronics9020379
https://doi.org/10.1007/978-3-319-60699-6_48
https://doi.org/10.1007/978-3-319-60699-6_48
https://doi.org/10.1007/s10846-018-0869-6
https://doi.org/10.1007/s10846-018-0869-6

[18] C. Zieliński, T. Kornuta, and T. Winiarski. “A Systematic Method of Designing Control Systems for Ser-
vice and Field Robots”. In: 19-th IEEE International Conference on Methods and Models in Automation
and Robotics, MMAR. IEEE, 2014, pages 1–14. doi: 10.1109/MMAR.2014.6957317.

[19] C. Zieliński and P. Trojanek. “Stigmergic cooperation of autonomous robots”. In: Journal of Mechanism
and Machine Theory 44 (Apr. 2009), pages 656–670.

16

https://doi.org/10.1109/MMAR.2014.6957317

	Introduction
	Model Formulation
	System and Its Parts
	Subsystem and its Parts
	Embodied Agent Communication
	Types of Agents
	Specification of a Particular Robot Control System

	Example of a System Specified Using EARL
	Structure of the System Composed of Agents
	Manipulator Agent manip/a

