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Important citation notice

If you are to use EARL, in your papers, please at first cite the Electronics journal arti-
cle [15], where the initial version of EARL is presented.

1 Introduction

EARL is developed by the robotic team at Warsaw University of Technology, Institute of Control and
Computation Engineering. EARL proposes a standardised approach to the control system specification
of cyber-physical systems both in reality and simulation. The Embodied Agent of the Warsaw school [8]
is its foundation. EARL maps the concepts associated with Embodied Agents into SysML blocks with
theirs properties, i.e., parts, references, values and operations. It extends the set of best practices, by
answering the following questions.

• How to organize a specification into SysML packages?

• For what purposes should the graphical tools be used and where the mathematical notation
should be applied directly?

• How to map the specification into component systems?

• How to describe systems with a time-varying structure?

Figure 1 presents the dependencies of EARL packages. The model utilised by EARL is defined in
the Basic EARL Model package (Section 2). The Basic EARL Model instances that «realize» EARL
model constraints are exemplified in the Basic EARL Instance package (Section 3). This package
«uses» independently defined computational structures from the Calculation Components package and
data types from the Manipulation Robot Value Types package. The exemplary Basic EARL Model
customisation is comprised in Search and Rescue System package (Section 4.1).
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Figure 1: EARL packages dependencies

Although the large class of systems can be specified purely with the usage of the basic model
presented further, the model can also be customised (e.g., [14, 6]) or incorporated into broader systems.
Some suggestions and examples are presented in Section 4. As the EARL is constantly developed by
its community, the list of major changes in EARL current version is listed in Section 5.

2 Model Formulation

The model of a system specified in EARL is composed of concepts describing its structure and be-
haviour. The structure of the model is specified with SysML Block Definition Diagrams (bdd) and
Internal Block Diagrams (ibd) [9]. For clarity of presentation, the various aspects of the structure are
presented by separate diagrams. The model is composed of a set of diagrams. Each of the diagrams
presents only a part of the structure, however the whole set has to be consistent. Some of the model
constraints are defined by mathematical equations.

2.1 System and Its Parts

System is the most general EARL concept. Its composition is defined in Figure 2. It can contain
a number of Groups of Agents ga. A Group of Agents is composed of at least one Agent a and can
constitute, e.g., a Robot or a part of the system executed on a particular computer. The Group of
Agents can also refer to other Group of Agents as ga. Agents are connected with a_a inter-agent
communication Links. Each a_a Link can be referred by a Group of Agents. In general, the Links
parts names are created by combining the source block part name at the beginning of the Link part
name and destination block part name at the end of the Link part name.
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Figure 2: System layer

In cyber-physical systems an Agent usually has a physical body, thus it is an Embodied Agent.
The composition of an Agent is defined in Figure 2. The specific features of robotics, where an Agent
can take on various roles, from real-time control, through sensor data processing, to execution of
computationally demanding tasks [19], require its decomposition into various types of Subsystems and
specialised Links between them. The variety of link names was introduced to distinguish the types
of Subsystems that communicate with each other and the direction of data transmission. The blocks
cardinality presented in Figure 2 is general, but particular system composition may introduce more
strict constraints according to the extra rules presented further.

There are five different specialisations of Subsystems (right side of Figure 2). The main one (in-
dispensable for an Agent) is a Control Subsystem cs, which coordinates the Agent’s Subsystems and
communicates with other Agents. Real Effectors re are Subsystems which affect the environment,
whereas Real Receptors rr (exteroceptors) gather information from the environment. Virtual Subsys-
tems (Virtual Receptors vr and Virtual Effectors ve) supervise the work of Real Subsystems. There-
fore, the Real Subsystems of a particular type, cannot exist without Mediary ones and vice versa, see
Equation (1).

|vr | ⩾ 1 ⇐⇒ |rr | ⩾ 1, |ve| ⩾ 1 ⇐⇒ |re| ⩾ 1. (1)

Inequalities Equation (1) represents the necessary conditions ensuring the preservation of system in-
tegrity. Additional constraints have to be imposed on the number of Subsystems due to the specificity
of inter-subsystem communication Links (Section 2.3).

The Links and Subsystems are composed in System (Figure 3) and aggregated in Agent to make
it possible to logically share them between Agents.
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Figure 3: System and composed Links and Subsystems

The Group of Subsystems (Figure 4) was introduced for the purpose of alternative presentation
(view) of System or Agent structure by grouping the Subsystems and Links between them.
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Figure 4: Group of Subsystems

If the Subsystems from various Agents are grouped into the single Group of Subsystems, then this
group is a part of System labelled as gs that can be also aggregated as a reference gs into Agents.
The Subsystems of single Agent can aggregate into its internal part – Group of Subsystems gs. The
Group of Subsystems can also refer to other Group of Subsystems as gs. As the example the Group
of Subsystems can aggregate the Subsystems that run in a single operating system’s process, use the
same communication medium (e.g., WiFi), or form a particular robot control system.

The Group of Links (Figure 5) was introduced for the purpose of aggregated presentation of com-
munication links between various blocks. It aggregates Links. Especially, in opposition to particular
Links, the Group of Links can represent both uni and bi directional communication. The Group of
Links can be composed or aggregated into various blocks as gl . The recursive self reference of Groups
of Links is also possible.
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Figure 5: Group of Links

2.2 Subsystem and its Parts

The composition of a Subsystem is defined in Figures 6, 7 and 8(a). It contains Input Buffers ib and
Output Buffers ob, Internal Memory m and other entities that are used to model both structural and
behavioural aspects of a Subsystem, i.e., FSM fsm (Finite State Machine), multiple internal Finite
State Machines ifsm, Predicates p, Basic Behaviours bb and Primitive Transition Functions pf .

Figure 6: Subsystem and its parts (Input, Output Buffers, Internal Memory and Hierarchical FSM are
excluded)
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Figure 7: Subsystem hierarchical FSM

Figure 8(b) depicts relations between a particular Subsystem and its communication Buffers. The
communication constraints depicted in Section 2.3 cause that each Virtual Receptor or Virtual Effector
must have at least one Input Buffer and one Output Buffer. A Real Effector needs at least one Input
Buffer to receive commands, and a Real Receptor needs at least one Output Buffer to send sensory
data.

(a) (b)

Figure 8: Subsystems and Buffers. (a) Subsystem Buffers and Internal Memory; (b) Relation of
particular Subsystems to communication Buffers
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Input Buffer, Output Buffer and Internal Memory are defined analogically as in [12]. Each Buffer
contains a data structure msg, which stores data of type valueType. The valueType can be defined
either as a primitive type or a composite and nested structure. Input Buffer possesses an operation
receive(), which enables communication with Output Buffers, and stores the received data in the
Input Buffer. Analogically, Output Buffer has a send() operation, which dispatches the data stored
in the Output Buffer to the connected Input Buffers. Internal Memory stores msg , which is a value
of type valueType. Transition Function Composition Variables were introduced for the purpose of
Communication between Primitive Transition Functions to compose Transition Function. Transition
Function Composition Variable, analogically to Internal Memory, stores msg , which is a value of type
valueType. Various forms of communication between Subsystems have been described in the paper [18].

Similarly to [2, 7], the EARL Subsystem structural model contains a Finite State Machine (FSM)
that determines its activities (Figure 6). The FSM is a graph defined by a set v of FSM Vertices and
a set t of FSM Transitions. Current FSM Vertex is called cfv . There are three types of FSM Vertices.
The first one is FSM Pseudostate. Each FSM can have one initial FSM State – ifs and zero or one
final FSM State – ffs. Those sates point the initial and final FSM Vertex. The second type is FSM
Superstate – ss. Each FSM can aggregate many ss. Each FSM Superstate aggregates one FSM called
sfsm. The last one is FSM State. Each FSM State aggregates one Basic Behaviour. The FSM States
can be aggregated into two groups: normal FSM States ns and error handling FSM States es. Similarly
FSM Transitions can be aggregated into: normal FSM Transitions nt leading to normal FSM States
and error handling FSM Transitions et leading to error handling FSM States. A Predicate specified in
operation fun() of FSM Transitions nt should satisfy at least the Predicate (2)

errTran/p.fun() := errorTransiton/mi .msg , (2)

and analogically a Predicate of FSM Transitions et should satisfy at least the Predicate (3)

¬errTran/p.fun() := ¬errorTransiton/mi .msg . (3)

Figure 9 defines how the run() operation of FSM works. In each moment of the Subsystem running
there is exactly one FSM Vertex active. It is called current FSM Vertex – cfv . The FSM starts in the
initial FSM State ifs. In each iteration of run() operation the type of cfv is checked. If cfv is of:

• FSM State type, it means that cfv is associated with the Basic Behaviour bb. Consequently the
cfv .bb.execute() operation executes a behaviour associated with the current vertex. Next, the
function nextV ertex() choose new current FSM Vertex – cfv .

• FSM Pseudostate type, there is a question if it is initial state or final state. It it is initial state,
the function nextV ertex() choose new current FSM Vertex – cfv . Otherwise, the action of run()
operation is finished.

• FSM Superstate type, the run() operation of sub-automata – cfv .sfsm.run() – is executed.

FSM Transition (Figure 6) is defined by the source and destination FSM States as well as the
associated Initial Condition, i.e., Predicate ic.
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Figure 9: FSM.run() operation

In the following part of the article a SysML dot “.” notation [9] is used to depict the nesting of the
part instances as well as other block properties. The dot “.” can be treated as an extraction operator.
It is assumed that if a specific instance of a part is not indicated, the set of all instances of the part is
taken into account. In particular, if there is only one instance, there is no need to name it explicitly,
only the part name is needed. The same rule applies to references. As the particular parts compose
objects of the same type, they can be interpreted as sets in mathematical formulas. The composition
of a Basic Behaviour is defined in Figure 6. The Basic Behaviour includes its transition function tf
which is referred to one of the Primitive Transition Functions; a Terminal Condition tc , which is
a Predicate determining when the execution of the Basic Behaviour should terminate; and an error
condition ec, which is a Predicate indicating that an error has been detected in the execution of the
Basic Behaviour. Basic Behaviour also posses an execute() operation (Figure 10).

Figure 10: Basic Behaviour.execute() operation

That operation, first executes a transition function tf .execute(), then all calculated Output Buffers
values are sent out by send(). Next, iterationNumber is incremented, and receive() gets new values
into Input Buffers. Finally, Error Condition ec.fun() and Terminal Condition tc.fun() are tested.
If both values are false, a new iteration inside Basic Behaviour execute() operation is performed.
Otherwise, errorTransiton/mo.msg is set, Basic Behaviour execute() operation ends and the FSM
run() operation designates the next FSM State (Figure 9).

The composition of a Primitive Transition Function is defined in Figure 6. It refers to Input Buffers,
Output Buffers as well as Subsystem Internal Memory (Figure 11).
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Figure 11: The utilisation of Buffers, Transition Function Composition Variables and Internal Memory
by: Primitive Transition Function, Predicate and Links

A Primitive Transition Function can read from the Internal Memory (using the mi reference) or
write to it (using the mo reference) and analogically read from the Transition Function Composition
Variable (using the icv reference) or write to it (using the ocv reference). It can aggregate other Prim-
itive Transition Functions. The aggregation can be modelled by directed graph, in case of Primitive
Transition Functions aggregation cycles are not allowed. Such an aggregation sometimes reduces the
redundancy of the specification, making it more comprehensible. Moreover, if the implementation of
the specified system is based on components, a Primitive Transition Function can be identified with
a separate component or a set of components [4, 13]. The Primitive Transition Function algorithm
is executed by an pf .execute() operation. It can use a.o. components from the Calculation Compo-
nents Package (Figure 1). The concept of the Embodied Agent introduces no restrictions on how to
implement this operation.

Terminal Conditions used by a Basic Behaviour and Initial Conditions utilised within an FSM
Transition can be decomposed into Predicates. The Predicate takes its arguments from Subsystem
Buffers, see Figures 6 and 11. Predicate executes an operation called fun producing a Boolean output.
Similarly to Primitive Transition Functions, Predicate can aggregate other Predicates, with the same
no-cycles restriction.

2.3 Embodied Agent Communication

The general system architecture is defined by the Agents and their Subsystems, being the building
blocks forming the system structure, and the communication links between those entities. In a way, the
architecture is defined by the constraints that are imposed on permissible connections. If no constraints
are imposed on the communication links, then the system designer has an excessive freedom of choice,
which in the case of his limited experience might lead to an obscure structure. Therefore, architectures
limiting this choice are preferred, thus leading to freedom from choice [1]. This provides guidance to
the designers, which results in a clear system structure.

In the case of EARL, inter-agent and inter-subsystem communication [17] is defined by unidirec-
tional communication Links (see Figures 2 and 11). The communication takes place between Input
Buffers and Output Buffers of Subsystems. Figure 12 presents acceptable communication links be-
tween pairs of Subsystems. Note that the inter-agent communication is realised between the Control
Subsystems of the communicating agents. Additionally, Figure 12 shows that for each Real Effector
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Figure 12: Communication constraints, where i ̸= j

present in the system at least one transmission chain should exist. The commands produced by the
Control Subsystem, transformed by the Virtual Effector, must reach the Real Effector. Analogically,
for each Real Receptor, there is one compulsory communication chain that transmits and processes
sensory data. The Real Receptor provides data to the Virtual Receptor which in an agregated form
passes it to the Control Subsystem. The other communication Links appearing in Figure 12 are not
obligatory. To define bidirectional communication, a pair of unidirectional communication Links is
used. Detailed discussion of communication in Embodied Agent systems is presented in [18].

2.4 Types of Agents

Four general activities of an Agent can be distinguished [16]:

C – overall control of the agent,

E – exerting influence over the environment by using effectors,

R – gathering the information from the environment by using receptors, and

T – inter-agent communication (transmission).

The first activity is indispensable, but the other three are optional, thus eight types of Agents result
(Table 1), depending on their capabilities. However, only seven are of utility, as an agent without any
of the optional capabilities is useless.
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Table 1: Type of Agent, number of its Subsystems (|ve|, |re|, |vr |, |rr |) and number of inter agent
communication Links (|a_a|) expressed with respect to the number of Buffers of the considered Agent

|cs| |ve| |re| |vr | |rr | |a_a| Description

C 1 0 0 0 0 0 zombie (useless)
CT 1 0 0 0 0 1..* purely computational agent
CE 1 1..* 1..* 0 0 0 blind agent
CR 1 0 0 1..* 1..* 0 monitoring agent
CET 1 1..* 1..* 0 0 1..* teleoperated agent
CRT 1 0 0 1..* 1..* 1..* remote sensor
CER 1 1..* 1..* 1..* 1..* 0 autonomous agent
CERT 1 1..* 1..* 1..* 1..* 1..* full capabilities

2.5 Specification of a Particular Robot Control System

The particular structure of a system is specified by application of instances of specialisations of blocks [5]
constituting the general model presented above. The names of instances should be long enough to be
descriptive and intuitive to interpret, thus reducing the need for additional glossaries. In our approach,
each instance can set the number of parts and references (e.g., associated Buffers), however, within the
limits imposed by the general model. Similarly, each instance can redefine the particular operations
of parent blocks present in the general model (e.g., each instance of Primitive Transition Function
redefines pf .execute operation).

In general, a system instance is defined as a graph. Its nodes represent Agents a and the directed
arcs represent the communication Links a_a between them. It is a good practice to name Links by using
the names of communicating Agents: first the source Agent name, then a underscore, and finally the
destination Agent name. Input Buffers and Output Buffers of the Control Subsystems are depicted as
sources and destinations of valueTypes being transmitted through the Links. The Buffer names reflect
the content of valueType being transmitted. The Subsystems are defined analogically.

Specification refers to a system with a static structure and invariable behaviour, or a system with
a variable structure at a certain time instant. To specify a particular system, instances of the relevant
concepts appearing in the general system model should be concretised. The SysML diagrams [10] are
a part of the EARL-based system. Some of the EARL concepts are specified mathematically:

• model and system instance constraints that can not be practically formulated in diagrams,

• fun operations of Predicates, and

• some calculations performed inside actions of Activity Diagrams of Primitive Transition Func-
tions, e.g., control laws.

In addition, mathematical notation is used to express formal conditions ascertaining the correctness of
the composition of Primitive Transition Functions.

3 Example of a System Specified Using EARL

This section is devoted to the illustration of how to use the EARL language to specify a robot control
system. The example presents a single robot multi-agent system containing CT and CET agents.
For the obvious reason of briefness, this description is not a complete specification, but contains only
examples of important aspects of the general model and its use:

• General system use cases.

• Structure of the whole System with Buffers, Internal Memories, inter Agent communication Links,
and valueTypes used by them.
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• Structure of the particular Agent with Buffers, Internal Memories, inter Subsystem communica-
tion Links, and valueTypes used by them.

• Specification of a particular Subsystem, its structure and behaviour, i.e., Buffers, Internal Mem-
ories,Transition Function Composition Variables, valueTypes, FSM, Basic Behaviours and their
Terminal Conditions and Error Conditions; Predicates, FSM Transitions and their Initial Condi-
tions; method of both composition and execution of Primitive Transition Functions and control
law utilised in the activity diagram of Primitive Transition Function. Primitive Transition Func-
tions can be mapped into the SysML activates.

A manipulation robot with N degrees of freedom and a gripper is considered, capable to perform
e.g. pick and place task. The specification process starts with the definition of the System structure.
Tips on the specification of requirements and use cases using SysML can be found in [3, 11].

3.1 System use cases

Diagram 13 illustrates general system use cases. The User can request the robot to:

• Synchronize the robot’s drives,

• Perform the movement in joint or operational space,

• Perform the emergency stop action, or

• Perform Pick and Place task, which is composed of the movement in joint and operational space,
and in certain conditions can be ended by the emergency stop action.

Figure 13: System use cases

3.2 Structure of the System Composed of Agents

Diagram 14 illustrates structure of Value Types and Units packages used in the presented System.
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Figure 14: Value Types and Units packages structure

Diagram 15 presents Units definitions, while diagram 16 illustrates basic Value Types used in the
Compound Value Types definitions.

Figure 15: Units definitions

Figure 16: Basic Value Types definitions

There are three Agents in the System (Figure 17). The Agent task/a supervises the task execution,
i.e., picking and placing objects; the Agent manip/a controls the N-DOF manipulator; and the Agent
grip/a controls the gripper. The gripper controller is separate from the manipulator controller, because
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different grippers can be attached to the manipulator, thus separate Agents facilitate system modi-
fication. Both manip/a and grip/a are aggregated in Group of Agents arm/ga. Figure 18 shows
alternative representation of the exemplary System – in this case full names of blocks were depicted.

Figure 17: Structure of the considered exemplary System

Figure 18: Structure of the considered exemplary System (full blocks names)
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Figure 19 presents the valueTypes transmitted between the Agents. The task Agent task/a sends
Manipulator Commands to the manipulator Agent manip/a. The commands contain parameters, e.g.,
operational or joint position setpoints and a command to perform emergency stop. In return task/a
gets a Manipulator State valueType containing: the current operational or joint position, status of the
manipulator movement and information whether an emergency stop occurred. The task Agent task/a
sends Gripper Command messages to the gripper Agent grip/a and receives Gripper Status in return.
Similarly to messages exchanged between manip/a and task/a Agents, the Gripper Command and
Gripper Status messages contain parameters describing the desired and current gripper finger positions.
Both manip/a and grip/a are aggregated in Group of Agents arm/ga.

Figure 19: valueTypes transmitted within the system

3.3 manipulator Agent manip/a

The structure of the manipulator Agent manip/a is presented in Figure 20. Each Real Effector re
represents one of the N drives of manipulator joints. Each drive is controlled by a Virtual Effector
that, e.g., implements a motor position regulator. All N Virtual Effectors ve are controlled by a single
Control Subsystem cs, which causes the manipulator to move either in joint space, where it interpolates
between joint positions, or in operational space, where it interpolates between Cartesian poses of
a frame affixed to a chosen link of the kinematic chain. Both Virtual Effectors and Real Effector are
aggregated in Group of Subsystems motors/gs.

Figure 20: Structure of the Agent manip/a; letter K placed at the end of the instance name should be
substituted by a number, i.e. K ∈ {1, ..., N}

16



The valueTypes transmitted inside the manipulator Agent manip/a are presented in Figure 21.
The Control Subsystem cs sends MotorControllerCommand to each Virtual Effector
motorControllerK/ve. The valueType contains the desired winding current value or a command to
switch the hardware driver to the emergency stop state. Each Virtual Effector motorControllerK/ve
sends to the Control Subsystem cs information about the current motor position and whether the
hardware driver is in an emergency stop state. Each Virtual Effector motorControllerK/ve sends the
desired motor winding current to its respective Real Effector motorK/re, and in return receives the
encoder readings. Table 2 describes types of data utilized in the manip/a.cs.

Figure 21: Definition of manip/a valueTypes

Table 2: manip/a.cs valueTypes

valueType

motionFinished/m Boolean
motionFinished/cv Boolean
currentOperationalPos/cv Oper Position
currentJointsPos/cv Joints Position
emergencyStopCommandK/cv Boolean
windingCurrentK/cv Real

Table 3 describes Predicates p used in the Control Subsystem manip/a.cs. They take as arguments
the contents of the buffers and memory. The newData(InputBuffer.msg) function producing Boolean
values, returns TRUE if there is new data in the Input Buffer, and FALSE if the data is obsolete.

Table 3: Definitions of manip/a.cs.p.fun

/p fun

emergencyStop
manipulatorCommand/ib.msg .emergencyStopCommand ∨
motorControllerState1/ib.msg .emergencyStopCommand ∨ . . .∨
motorControllerStateN /ib.msg .emergencyStopCommand

motionFinished motionFinished/mi .msg
newJointsPos newData(manipulatorCommand/ib.msg .jointsPosSetpoint)
newOperationalPos newData(manipulatorCommand/ib.msg.operationalPosSetpoint)
true TRUE
false FALSE

Tables 4, 5 describe the Predicates utilised by manip/a.cs. Figure 22 shows possible transitions
between the FSM States of the Control Subsystem manip/a.cs as well as the association of Basic
Behaviours to particular FSM States.
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Table 4: Initial conditions labelling manip/a.cs.fsm transitions. It is assumed that task/a can not set
simultaneously a new joint position and an operational space pose

Labels of transitions between FSM States

cs.fsm.t .ic.fun ≜ PREDICATE
t PREDICATE

idle_jointMove/nt ¬errTran/p.fun() ∧ newJointsPos/p.fun

jointMove_jointMove/nt ¬errTran/p.fun() ∧ newJointsPos/p.fun

idle_operationalMove/nt ¬errTran/p.fun() ∧ newOperationalPos/p.fun

operationalMove_operationalMove/nt ¬errTran/p.fun() ∧ newOperationalPos/p.fun

jointMove_idle/nt ¬errTran/p.fun()
operationalMove_idle/nt ¬errTran/p.fun()

i_emergencyStop/et , i ̸= emergencyStop errTran/p.fun()

Table 5: Terminal and error conditions of manip/a.cs.bb

Definitions of Terminal Conditions and Error Conditions

cs.BB_CONDITION.fun ≜ PREDICATE
BB_CONDITION PREDICATE

idle/bb.tc newJointsPos/p.fun ∨ newOperationalPos/p.fun

idle/bb.ec emergencyStop/p.fun

jointMove/bb.tc motionFinished/p.fun

jointMove/bb.ec emergencyStop/p.fun

operationalMove/bb.tc motionFinished/p.fun

operationalMove/bb.ec emergencyStop/p.fun

emergencyStop/bb.tc false/p.fun

emergencyStop/bb.ec false/p.fun

The Control Subsystem manip/a.cs uses the following Primitive Transition Functions.

• calculatePosition/pf —calculates manipulator joint positions and end-effector operational space
pose.

• jointMove/pf / operationalMove/pf —generates the joint/operational space trajectory and cal-
culates the winding current needed to realize the motion (Figure 23).

• passiveRegulation/pf —calculates the winding current needed to keep the manipulator in a sta-
tionary position.

• emergencyStop/pf —copies the information about the occurrence of an emergency stop to Output
Buffers that are linked to the associated Subsystem Input Buffers.

• outputManipState/pf —composes ManipulatorState/ob (Figure 24(a)).

• outputMotorCon/pf —composes DriveControllerCommandK/ob (Figure 24(b)).
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Figure 22: manip/a.cs.fsm definition. Conditions of transitions between FSM States are specified in
Table 4

Figure 23: manip/a.cs.jointMove/pf .execute() – operation definition

Figure 23 shows the execute operation of a jointMove/pf Primitive Transition Function. This Prim-
itive Transition Function realises, e.g., the PI type motor position regulator for each joint Equation (4),
Equation (5):

windingCurrent = Kp e(t) +Ki

∫ t

0
e(t′)dt′, (4)

e = desiredMotorPos− currentMotorPos, (5)

where Kp and Ki are, respectively, proportional and integral gain factors, e is the position error,
t is time.
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(a) outputManipState/pf .execute() (b) outputMotorCon/pf .execute()

Figure 24: manip/a.cs.pf .execute() – operations definition

Figures 24(a) and 24(b) show the execute operation of a outputManipState/pf and outputMotorCon/pf
respectively. Those Primitive Transition Functions defines the composition of Output Buffer messages
from certain Transition Function Composition Variables entities.

Figure 25: jointMove/bb – main sequence of actions execution
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Figure 26: jointMove/bb – main sequence of associated pf execution

Figures 25 and 26 show how the operations jointMove/pf , calculatePosition/pf , outputManipState/pf
and outputMotorCon/pf are executed. In particular it shows:

• the order of pf execution, and

• moments when communication with associated subsystems takes place.

Table 6 shows which Primitive Transition Functions constitute the composition of transition func-
tion used by Basic Behaviours of manip/a.cs.bb.

The Primitive Transition Functions manip/a.cs.pf composed into Primitive Transition Function
manip/a.cs.bb.tf are subdivided into two disjoint sets: pfc and pfo. The pfc set Equation (6) contains
Primitive Transition Functions that take as arguments Input Buffers: manipulatorCommand/ib and
motorControllerCommandK/ib[N ]

pfc={calculatePosition/pf , jointMove/pf , operationalMove/pf ,

passiveRegulation/pf , emergencyStop/pf }.
(6)

The values produced by them are inserted into the Transition Function Composition Variables ocvs
Equation (7)

ocvs={motionFinished/ocv , currentOperationalPos/ocv , currentJointsPos/ocv ,

emergencyStopCommandK/ocv ,windingCurrentK/ocv}.
(7)

and the Internal Memory mbo Equation (8)

mbo={motionFinished/mo}. (8)

Functions from the pfo set Equation (9) take arguments from the Transition Function Composition
Variables icvs associated with these from set ocvs Equation (7) and produce the Output Buffer values:
ManipulatorState/ob and MotorControllerCommandK/ob[N ], hence they produce output of the whole
Subsystem

pfo={outputManipState/pf , outputMotorCon/pf }. (9)
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It was assumed that any two Primitive Transition Functions used by a particular Primitive Transition
Function manip/a.cs.bb.tf do not produce data to the same Transition Function Composition Vari-
ables, Internal Memories and Output Buffers, therefore the following conditions are formulated for the
pfc set Equations (10), (11) and the pfo set Equation (12), respectively,

(∀x/bb)(∀x/bb.i/pf , x/bb.j/pf ∈ pfc, i ̸= j)(x/bb.i/pf .k/ocv ≁ x/bb.j/pf .k/ocv , k/ocv ∈ ocvs),
(10)

(∀x/bb)(∀x/bb.i/pf , x/bb.j/pf ∈ pfc, i ̸= j)(x/bb.i/pf .k/mo ≁ x/bb.j/pf .k/mo, k/mo ∈ mbo),
(11)

(∀x/bb)(∀x/bb.i/pf , x/bb.j/pf ∈ pfo, i ̸= j)(x/bb.i/pf .k/ob ≁ x/bb.j/pf .k/ob), (12)

where ≁ stands for „is not the same entity”.

Table 6: Aggregation of transition function manip/a.cs.bb.tf with Primitive Transition Functions
manip/a.cs.bb.tf .pf . The right part of the table presents what parts of Output Buffers,
Transition Function Composition Variables and Internal Memories are produced by the specific
Primitive Transition Functions

/ocv /mo /ob

/bb /pf m
ot
io
n
F
in
is
h
ed

cu
rr
en

tJ
oi
n
tP

os

cu
rr
en

tO
p
er
a
ti
on

a
lP

os

em
er
g
en

cy
S
to
p

w
in
d
in
g
C
u
rr
en

tK

m
ot
io
n
F
in
is
h
ed

M
a
n
ip
u
la
to
rS

ta
te

M
ot
or
C
on

tr
ol
le
rC

om
m
a
n
d
K

idle

outputManipState •

outputMotorCon •

calculatePosition • •

passiveRegulation •

jointMove

outputManipState •

outputMotorCon •

calculatePosition • •

jointMove • • •

operationalMove

outputManipState •

outputMotorCon •

calculatePosition • •

operationalMove • •

emergencyStop

outputManipState •

outputMotorCon •

calculatePosition • •

emergencyStop •

Transition functions manip/a.cs.bb.tf act in the following way. First, they compute the Primitive
Transition Functions from the pfc set, and then they compute the Primitive Transition Functions
from the pfo set. The fulfilment of Equations (10), (11) and (12) makes it possible to run Primitive
Transition Functions being members of pfc in parallel in the first stage of the Primitive Transition
Function manip/a.cs.bb.tf execution, and then run the Primitive Transition Functions being members
of pfo set in parallel in the second stage of Primitive Transition Function manip/a.cs.bb.tf execution.
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To illustrate the above considerations, Figure 27 shows the definition of jointMove/bb.tf .execute()
operation – practical realisation of transition function execution for jointMove Basic Behaviour.

Figure 27: jointMove/bb.tf .execute() operation definition

4 Exemplary EARL customisations

The convenient way to customize EARL model is to specify a new model and include it in the dedicated
SysML package. The Blocks of the new model can derive from Basic Model blocks.

4.1 Agent specialisation

The Agent block can be specialised to, e.g., group Agents with certain properties and to define com-
munication structure of particular System derived from Basic EARL Model::System. The composition
of exemplary Search and Rescue System Model::System is depicted in Figure 28.

Figure 28: The composition of Search and Rescue System

The communication structure and constraints are presented in Figure 29. Control Center Agent
plays a role of communication broker between Seeker Robot Agents and Rescue Robot Agents. The
communication in this example is unidirectional.
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Figure 29: The communication structure and constraints of Search and Rescue System

It should be noted that System parts: a, a_a should not be used in the inherited Systems without
redefinition that keeps model consistency. In Search and Rescue::System these parts are not redefined,
so they are not used. Hence, the general structure of an exemplary instance of Search and Rescue
System may take form as in Figure 30. It consist of: 3 seeker robots, 2 rescue robots, control centre
and communication Links between previously mentioned parts. It should be noted that for the sake
of brief, general system structure description the ports have not to be directly specified in ibd, as well
as Links names.

Figure 30: The structure of an exemplary instance of Search and Rescue System

5 Major changes in current version

1. FSM Vertex, FSM Pseudostate and FSM Superstate added, FSM.run() operation modified (au-
thors: Maciej Węgierek, Tomasz Winiarski, Cezary Zieliński),

2. Links and Subsystems are composed in System and aggregated in Agent to make it possible to
logically share them between Agents (author: Tomasz Winiarski).

3. Groups of Links are introduced to aggregate Links (authors: Tomasz Winiarski, Jarosław Kar-
wowski).

4. Packages names simplification and adjustment (authors: Tomasz Winiarski, Wojciech Dudek).
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