
Note: This tutorial assumes that you have completed the previous tutorials: creating a ROS msg

and srv (/ROS/Tutorials/CreatingMsgAndSrv).

 Please ask about problems and questions regarding this tutorial on answers.ros.org

(http://answers.ros.org). Don't forget to include in your question the link to this page, the versions of

your OS & ROS, and also add appropriate tags.

Writing a Simple Publisher and
Subscriber (Python)
Description: This tutorial covers how to write a publisher and subscriber node in python.

Tutorial Level: BEGINNER

Next Tutorial: Examining the simple publisher and subscriber (/ROS/Tutorials

/ExaminingPublisherSubscriber)

Contents

Writing the Publisher Node

The Code1.

The Code Explained2.

1.

Writing the Subscriber Node

The Code1.

The Code Explained2.

2.

Building your nodes

Additional Resources

Video Tutorial1.

1.

3.

1. Writing the Publisher Node
"Node" is the ROS term for an executable that is connected to the ROS network. Here we'll create the

publisher ("talker") node which will continually broadcast a message.

Change directory into the beginner_tutorials package, you created in the earlier tutorial, creating a

package (/ROS/Tutorials/CreatingPackage):

$ roscd beginner_tutorials

1.1 The Code
First lets create a 'scripts' folder to store our Python scripts in:

catkin rosbuild

ROS/Tutorials/WritingPublisherSubscriber(pyth... http://wiki.ros.org/ROS/Tutorials/WritingPublis...

1 of 7 7/24/19, 3:57 PM

$ mkdir scripts
$ cd scripts

Then download the example script talker.py (https://raw.github.com/ros/ros_tutorials/kinetic-

devel/rospy_tutorials/001_talker_listener/talker.py) to your new scripts directory and make it

executable:

$ wget https://raw.github.com/ros/ros_tutorials/kinetic-devel/rospy_tutorials
/001_talker_listener/talker.py
$ chmod +x talker.py

You can view and edit the file with $ rosed beginner_tutorials talker.py or just look

below.

Toggle line numbers

 1 #!/usr/bin/env python
 2 # license removed for brevity
 3 import rospy
 4 from std_msgs.msg import String
 5
 6 def talker():
 7 pub = rospy.Publisher('chatter', String, queue_size=10)
 8 rospy.init_node('talker', anonymous=True)
 9 rate = rospy.Rate(10) # 10hz
 10 while not rospy.is_shutdown():
 11 hello_str = "hello world %s" % rospy.get_time()
 12 rospy.loginfo(hello_str)
 13 pub.publish(hello_str)
 14 rate.sleep()
 15
 16 if __name__ == '__main__':
 17 try:
 18 talker()
 19 except rospy.ROSInterruptException:
 20 pass

1.2 The Code Explained
Now, let's break the code down.

Toggle line numbers

 1 #!/usr/bin/env python

Every Python ROS Node (/Nodes) will have this declaration at the top. The first line makes sure your

script is executed as a Python script.

Toggle line numbers

ROS/Tutorials/WritingPublisherSubscriber(pyth... http://wiki.ros.org/ROS/Tutorials/WritingPublis...

2 of 7 7/24/19, 3:57 PM

 3 import rospy
 4 from std_msgs.msg import String

You need to import rospy if you are writing a ROS Node (/Nodes). The std_msgs.msg import is so

that we can reuse the std_msgs/String message type (a simple string container) for publishing.

Toggle line numbers

 7 pub = rospy.Publisher('chatter', String, queue_size=10)
 8 rospy.init_node('talker', anonymous=True)

This section of code defines the talker's interface to the rest of ROS.

pub = rospy.Publisher("chatter", String, queue_size=10) declares that your node is

publishing to the chatter topic using the message type String. String here is actually the class

std_msgs.msg.String. The queue_size argument is New in ROS hydro and limits the amount of

queued messages if any subscriber is not receiving them fast enough. In older ROS distributions just

omit the argument.

The next line, rospy.init_node(NAME, ...), is very important as it tells rospy the name of your

node -- until rospy has this information, it cannot start communicating with the ROS Master (/Master). In

this case, your node will take on the name talker. NOTE: the name must be a base name (/Names),

i.e. it cannot contain any slashes "/".

anonymous = True ensures that your node has a unique name by adding random numbers to the

end of NAME. Refer to Initialization and Shutdown - Initializing your ROS Node (/rospy/Overview

/Initialization%20and%20Shutdown#Initializing_your_ROS_Node) in the rospy documentation for

more information about node initialization options.

Toggle line numbers

 9 rate = rospy.Rate(10) # 10hz

This line creates a Rate object rate. With the help of its method sleep(), it offers a convenient way

for looping at the desired rate. With its argument of 10, we should expect to go through the loop 10

times per second (as long as our processing time does not exceed 1/10th of a second!)

Toggle line numbers

 10 while not rospy.is_shutdown():
 11 hello_str = "hello world %s" % rospy.get_time()
 12 rospy.loginfo(hello_str)
 13 pub.publish(hello_str)
 14 rate.sleep()

This loop is a fairly standard rospy construct: checking the rospy.is_shutdown() flag and then

doing work. You have to check is_shutdown() to check if your program should exit (e.g. if there is a

Ctrl-C or otherwise). In this case, the "work" is a call to pub.publish(hello_str) that publishes a

string to our chatter topic. The loop calls rate.sleep(), which sleeps just long enough to maintain

the desired rate through the loop.

(You may also run across rospy.sleep() which is similar to time.sleep() except that it works with

ROS/Tutorials/WritingPublisherSubscriber(pyth... http://wiki.ros.org/ROS/Tutorials/WritingPublis...

3 of 7 7/24/19, 3:57 PM

simulated time as well (see Clock (/Clock)).)

This loop also calls rospy.loginfo(str), which performs triple-duty: the messages get printed to

screen, it gets written to the Node's log file, and it gets written to rosout (/rosout). rosout (/rosout) is a

handy for debugging: you can pull up messages using rqt_console (/rqt_console) instead of having to

find the console window with your Node's output.

std_msgs.msg.String is a very simple message type, so you may be wondering what it looks like to

publish more complicated types. The general rule of thumb is that constructor args are in the same

order as in the .msg file. You can also pass in no arguments and initialize the fields directly, e.g.

msg = String()
msg.data = str

or you can initialize some of the fields and leave the rest with default values:

String(data=str)

You may be wondering about the last little bit:

Toggle line numbers

 17 try:
 18 talker()
 19 except rospy.ROSInterruptException:
 20 pass

In addition to the standard Python __main__ check, this catches a

rospy.ROSInterruptException exception, which can be thrown by rospy.sleep() and

rospy.Rate.sleep() methods when Ctrl-C is pressed or your Node is otherwise shutdown. The

reason this exception is raised is so that you don't accidentally continue executing code after the

sleep().

Now we need to write a node to receive the messages.

2. Writing the Subscriber Node

2.1 The Code
Download the listener.py (https://raw.github.com/ros/ros_tutorials/kinetic-devel/rospy_tutorials

/001_talker_listener/listener.py) file into your scripts directory:

$ roscd beginner_tutorials/scripts/
$ wget https://raw.github.com/ros/ros_tutorials/kinetic-devel/rospy_tutorials
/001_talker_listener/listener.py

The file contents look close to:

Toggle line numbers

ROS/Tutorials/WritingPublisherSubscriber(pyth... http://wiki.ros.org/ROS/Tutorials/WritingPublis...

4 of 7 7/24/19, 3:57 PM

 1 #!/usr/bin/env python
 2 import rospy
 3 from std_msgs.msg import String
 4
 5 def callback(data):
 6 rospy.loginfo(rospy.get_caller_id() + "I heard %s", data.data)
 7
 8 def listener():
 9
 10 # In ROS, nodes are uniquely named. If two nodes with the same
 11 # name are launched, the previous one is kicked off. The
 12 # anonymous=True flag means that rospy will choose a unique
 13 # name for our 'listener' node so that multiple listeners can
 14 # run simultaneously.
 15 rospy.init_node('listener', anonymous=True)
 16
 17 rospy.Subscriber("chatter", String, callback)
 18
 19 # spin() simply keeps python from exiting until this node is stoppe
d
 20 rospy.spin()
 21
 22 if __name__ == '__main__':
 23 listener()

Don't forget to make the node executable:

$ chmod +x listener.py

2.2 The Code Explained
The code for listener.py is similar to talker.py, except we've introduced a new callback-based

mechanism for subscribing to messages.

Toggle line numbers

 15 rospy.init_node('listener', anonymous=True)
 16
 17 rospy.Subscriber("chatter", String, callback)
 18
 19 # spin() simply keeps python from exiting until this node is stoppe
d
 20 rospy.spin()

This declares that your node subscribes to the chatter topic which is of type

std_msgs.msgs.String. When new messages are received, callback is invoked with the

message as the first argument.

We also changed up the call to rospy.init_node() somewhat. We've added the anonymous=True
keyword argument. ROS requires that each node have a unique name. If a node with the same name

ROS/Tutorials/WritingPublisherSubscriber(pyth... http://wiki.ros.org/ROS/Tutorials/WritingPublis...

5 of 7 7/24/19, 3:57 PM

Wiki: ROS/Tutorials/WritingPublisherSubscriber(python) (last edited 2019-07-18 19:12:55 by AnisKoubaa (/AnisKoubaa))

comes up, it bumps the previous one. This is so that malfunctioning nodes can easily be kicked off the

network. The anonymous=True flag tells rospy to generate a unique name for the node so that you

can have multiple listener.py nodes run easily.

The final addition, rospy.spin() simply keeps your node from exiting until the node has been

shutdown. Unlike roscpp, rospy.spin() does not affect the subscriber callback functions, as those have

their own threads.

3. Building your nodes
We use CMake as our build system and, yes, you have to use it even for Python nodes. This is to make

sure that the autogenerated Python code for messages and services is created.

Go to your catkin workspace and run catkin_make:

$ cd ~/catkin_ws
$ catkin_make

Now that you have written a simple publisher and subscriber, let's examine the simple publisher and

subscriber (/ROS/Tutorials/ExaminingPublisherSubscriber).

3.1 Additional Resources
Here are some additional resources contributed by the community.

3.0.1 Video Tutorial

The following video presents a small tutorial explaining how to write and test a publisher and subscriber

in ROS with C++ and Python based on the talker/listener example above

[UDEMY COURSE] ROS Tutorial 3: ROS Publishers…

Except where

otherwise noted,

the ROS wiki is

licensed under the

Creative Commons Attribution 3.0 (http://creativecommons.org/licenses/by/3.0/) | Find us on Google+

(https://plus.google.com/113789706402978299308)

ROS/Tutorials/WritingPublisherSubscriber(pyth... http://wiki.ros.org/ROS/Tutorials/WritingPublis...

6 of 7 7/24/19, 3:57 PM

(http://www.osrfoundation.org)

ROS/Tutorials/WritingPublisherSubscriber(pyth... http://wiki.ros.org/ROS/Tutorials/WritingPublis...

7 of 7 7/24/19, 3:57 PM

